Yang Gao

Skip to content
  • Home
  • Blog
  • Gallery

Governing equations for fully compressible reacting flow

\textbf{1. Continuity equation:}

    \[ \frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \textbf{V}) = 0 \]

\textbf{Or in tensor notation:}

    \[ \frac{\partial\rho}{\partial t} + \frac{\partial\rho u_i}{\partial x_i}= 0 \]

\textbf{2. Momentum equation:}

    \[ \frac{\partial\rho\textbf{V}}{\partial t} + \nabla\cdot(\rho\textbf{V}\otimes\textbf{V}) = \rho g -\nabla p + \nabla\cdot\tau \]

\textbf{Or in tensor notation:}

    \[ \frac{\partial\rho u_i}{\partial t} + \frac{\partial\rho u_i u_j}{\partial x_j} = \rho g_i -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} \]

\textbf{3. Energy equation:}

    \[ \frac{\partial\rho e}{\partial t} + \nabla\cdot(\rho\textbf{V}e) = -p(\nabla\cdot\textbf{V}) + \tau : \nabla\textbf{V} - \nabla\cdot\textbf{q} \]

\textbf{Or in tensor notation:}

    \[ \frac{\partial\rho e}{\partial t} + \frac{\partial\rho u_j e}{\partial x_j} = -p\frac{\partial u_j}{\partial x_j} + \tau_{ij}\frac{\partial u_i}{\partial x_j} - \frac{\partial q_j}{\partial x_j} \]

\textbf{4. Species equation:}

    \[ \frac{\partial\rho Y_m}{\partial t} + \nabla\cdot(\rho \textbf{V} Y_m) = -\nabla\cdot(\rho Y_m V_m) + S_m \]

\textbf{Or in tensor notation:}

    \[ \frac{\partial\rho Y_m}{\partial t} + \frac{\partial \rho u_j Y_m}{\partial x_j} = -\frac{\partial \rho Y_m V_m}{\partial x_j} + S_m \]

\textbf{where} V_m \textbf{is the diffusion velocity for species m}

PDF notes can be downloaded here
Governing Equations in vector and tensor notations
Governing equations for fully compressible reacting flow

This entry was posted in Research on June 29, 2017 by yanggao.

Post navigation

← This website is managed using WordPress Modify memory limits in ANSYS CHEMKIN17.0 →
Proudly powered by WordPress